170
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of narrowly distributed polystyrene-encapsulated silica nanoparticles via emulsion polymerization

, , , , &
Pages 451-456 | Received 13 Mar 2016, Accepted 30 Mar 2016, Published online: 11 Apr 2016
 

ABSTRACT

Polystyrene (PS)-encapsulated silica nanoparticles were successfully synthesized by conventional emulsion polymerization for solving the aggregation matter of nanoscaled silica. The grafting coupling agents and PS on the silica surface were detected by Fourier Transform Infrared (FTIR) spectroscopy. The influence of silica and monomer to water ratios and initiator concentration on particle size distribution of the nanocomposite latex was investigated. The particle size distribution firstly narrowed and then broadened with the increase of silica and monomer to water ratios and initiator concentration. The narrow distribution could be controlled in an appropriate silica and monomer to water ratio and an initiator concentration of 1/15 and 2 wt%, respectively. From the evaluation of transmission electron microscopy (TEM) micrographs and dynamic light scattering (DLS) measurement, it was proved that the nanocomposite latex did not have all sphere-like shape, but contained tiny amounts of irregular bodies. The formation mechanism of PS-encapsulated silica nanoparticles was also discussed.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.