287
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Flocculation performance and mechanism of chitosan-based flocculants in the treatment of emulsified oily wastewater

, , &
Pages 1049-1054 | Received 04 Jul 2016, Accepted 29 Jul 2016, Published online: 17 Aug 2016
 

ABSTRACT

Chitosan (CS)-based flocculants, denoted as CS-g-PAM and CS-g-PDBC, were successfully prepared via graft copolymerization of CS with acrylamide (AM) or dimethyl acryloyloxyethyl benzyl ammonium chloride (DBC). The grafting was confirmed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The flocculation performance of CS-g-PAM and CS-g-PDBC, as well as flocculants such as cationic polyacrylamide (CPAM), polyaluminum chloride (PAC), and CS, was evaluated and compared for treating emulsified oil wastewater. It was found that CS-g-PDBC exhibited excellent flocculation performance under both acidic and neutral conditions, while CS showed better flocculation ability under alkaline condition. The flocculation mechanism of CS and CS-g-PDBC was investigated via zeta potential measurements. Results showed that different flocculation mechanisms were involved at various pH levels. As regarding CS, the flocculation mechanism is mainly charge neutralization, patching, and sweep floc under acidic, neutral, and alkaline conditions, respectively, while for CS-g-PDBC, patching was the dominant mechanism under both acidic and neutral conditions.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.