856
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

The rheology of hydrogels based on chitosan–gelatin (bio)polyelectrolyte complexes

, &
Pages 1427-1434 | Received 26 Sep 2016, Accepted 16 Oct 2016, Published online: 15 Mar 2017
 

ABSTRACT

Influence of the chitosan concentration in the low-concentrated acidic hydrogels formed by (bio)polyelectrolyte chitosan–gelatin complexes (at a constant gelatin concentration of 1%) was studied by shearing in steady flow and linear oscillations. These complexes, including native gelatin, demonstrate clearly expressed viscoelastic properties. Viscoelastic properties correlated well with the non-Newtonian behavior of hydrogels (according to the Cox–Merz rule). Increasing the chitosan concentration (from 0.1% to 0.6%) results in exponential growth of the apparent viscosity, yield stress, and storage modulus. However, a further increase in chitosan concentration to 0.8% leads to a reduction in these rheological parameters due to the electrostatic repulsion of similarly charged polyelectrolyte complexes under the high concentration of these complexes. The macro-rheological properties of chitosan–gelatin gels are mainly determined by the colloidal structure of sol-precursors in solutions. The yield stress dependence on the radius of the dispersed particles is of square type. Electron photomicrographs showed that the introduction of even small quantities of chitosan leads to radical changes in the supramolecular structure of the gelatin gel.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.