280
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of CO2 responsive wormlike micelles and the effect of hydrogen bond on the strength of the network

, , , &
Pages 77-82 | Received 04 Feb 2017, Accepted 14 Feb 2017, Published online: 10 Apr 2017
 

ABSTRACT

We first prepared two types of CO2-responsive wormlike micelles based on N-butyldiethanolamine–sodium oleate (BDEA–NaOA) and N,N-diethyl butylamine–sodium oleate (DEBA–NaOA), respectively. And then, we compared the two different systems to investigate the effect of hydrogen bond on the properties of wormlike systems. The results of the pH and conductivity variation show that tertiary amine groups on BDEA and DEBA were ionized to quaternary ammonium salts after bubbling of CO2 into the systems, which work with OA to form wormlike micelles based on electrostatic interaction. The results of rheological measurements exhibit that the viscosity and viscoelastic of the BDEA–NaOA were obviously superior to DEBA–NaOA. The dramatically difference of the two kind of wormlike micelles was due to the strong intermolecular hydrogen bond between the BDEA and NaOA. This indicates that the hydrogen bond could show great effect on the properties of the wormlike micelles. Finally, a reasonable mechanism was proposed based on the molecular structure, micelles assembly, and the intermolecular interactions.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.