258
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study of asphaltene deposition in transparent microchannels using the light absorption method

, ORCID Icon, , , , , & show all
Pages 744-753 | Received 08 Aug 2017, Accepted 02 Oct 2017, Published online: 10 Nov 2017
 

ABSTRACT

This study focuses on an experimental investigation of asphaltene deposition in a vertical transparent microchannel. Heptane-induced asphaltene precipitation is utilized to precipitate dissolved asphaltene in crude oil into asphaltene particles at ambient temperature and standard atmospheric pressure. These asphaltene particles deposit gradually on the surface of microchannels. The key parameters that influence the mechanism of asphaltene deposition are the ratio of crude oil to n-heptane and experimental elapsed time. At a constant flowrate, the amount of asphaltene deposited on a transparent channel wall is quantified using a new flow visualization technique based on reflected light intensity and image analysis. Asphaltene precipitation and deposition strongly affect the reflected light intensity through the change of mixture color in the recorded images. Experimental results show that asphaltene deposition process follows three stages, (i) slow asphaltene particle deposition at the beginning of the experiment, (ii) a rapid and continuous deposition occurring after few hours and (iii) a slower deposition (decreasing deposition rate) at the end of the experimentation. The experimental results for different crude oil to n-heptane ratios illustrate that deposition increases with this ratio, i.e. increasing concentration of n-heptane. An empirical equation is developed to correlate the intensity of the light absorption to the thickness of the deposited asphaltene in a transparent microchannel. Non-uniform deposition along the longitudinal direction of the microchannel is characterized. Deposits decrease with increasing longitudinal distance from the inlet. This non-uniform deposition distribution is due to local mass transport limitations and asphaltene aggregation size effect.

GRAPHICAL ABSTRACT

Additional information

Funding

The work is supported by a research Grant (RD006) from Abu Dhabi National Oil Company (ADNOC) through the Oil Sub-Committee.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.