1,298
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content

, , , &
Pages 826-835 | Received 05 Aug 2017, Accepted 26 Oct 2017, Published online: 26 Dec 2017
 

ABSTRACT

A novel Pickering-stabilized emulsion gel with controlled rheological properties was derived from wheat gliadin nanoparticles-stabilized emulsions by altering preparation conditions (pH, ionic strength or oil content). The formed nanoparticles were relatively small uniform spheres particles (d < 120 nm), whose surface potential (ζ-potential) changed from +9.9 mV to −14.19 mV with the pH of the solution increased from 3.5 to 9. The isoelectric point of gliadin nanoparticles was around pH 6.8. The nanoparticles were highly susceptible to aggregation at pH values near their isoelectric point due to a reduction of electrostatic repulsion between them. Pickering-stabilized emulsions could be formed by blending the nanoparticles with oil and water, and Pickering-stabilized emulsion gels were obtained by altering pH, ionic strength or oil content of the dispersions. Creaming stabilities and rheological properties of the emulsion gels were modulated. Stable Pickering-stabilized emulsion gels with relatively large elastic modulus were formed with 70% oil content at pH 5.5 and 6.0 in the absence of NaCl. The viscosity increased with the increasing of oil content and salt concentration, and the viscosity enhanced when the pH around the isoelectric point. These results may facilitate the design of novel viscoelastic emulsion gels with the Pickering-stabilize mechanism which are suitable for utilizing in foods and other products.

GRAPHICAL ABSTRACT

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 31601468], Key Project of Natural Science Foundation of Jiangxi Province, China [Grant Number 20171ACB20005], and Major Discipline Academic, Technical Leader Training Plan Project of Jiangxi Province [Grant Number 20162BCB22009].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.