295
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Removal of methylene blue using a novel generation photocatalyst based on nano-SnO2/wild plumb kernel shell biochar composite

& ORCID Icon
Pages 2748-2759 | Received 22 Apr 2022, Accepted 03 Nov 2022, Published online: 21 Nov 2022
 

Abstract

A series of measurement results revealed that the nano-SnO2 (n-SnO2) nanoparticles were spread uniformly on the carbon surface inside the wild plum (Prunus domestica) kernel shell biochar (WPKSB) structure. The addition of hydrothermally synthesized n-SnO2 to WPKS improved both the adsorption capacity and the photocatalytic potential of WPKSB for methylene blue (MB) removal. When the initial MB content was 5 mg/L, the n-SnO2@WPKSB composite demonstrated high MB removal efficiency under UV light via a combined effect of adsorption and photocatalysis. The n-SnO2@WPKSB composite removed 99.5 (±0.4) % of the MB from the dye-polluted water sample in 105 minutes at pH of 7.0. Because of the synergistic effect of adsorption and photodegradation, the composite was more effective at treating the aqueous MB solution than WPKSB and n-SnO2 alone. Reusability tests were run to remove MB to assess the composite structure’s chemical stability and catalytic capacity. The n-SnO2@WPKSB composite was characterized using X-ray Diffraction, Fourier Transform infrared and Scanning Electron Microscopy. This research investigates how to make metal oxide/biochar nanocomposites with exceptional adsorption and photocatalysis properties for the oxidation and removal of MB.

Graphical Abstract

Acknowledgements

We thank Engin Sever and Caner Durucan for the assistance of XRD and FTIR analysis and MD Mehedi Hasan for the photocatalytic measurements. The authors would like to thank TUBA (Turkish Academy of Sciences), partial financial support for this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.