271
Views
32
CrossRef citations to date
0
Altmetric
Research Articles

Dynamics of thermal Marangoni stagnation point flow in dusty Casson nanofluid

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 707-715 | Received 06 May 2021, Accepted 15 Jul 2021, Published online: 08 Sep 2021
 

ABSTRACT

The current perusal presents a stagnation point (SP) flow and heat transfer analysis of Casson dusty nanofluid over a surface with Marangoni convection. Here, non-Newtonian nanoliquid suspended with Ti6Al4V as nanoparticle and dust particles in base fluid sodium alginate is utilized to scrutinize the present two-phase boundary layer model. Further, suitable transformations are used to reduce the modelled governing equations to a set of ordinary differential equations. Later, numerical solutions are secured using an efficient and well-known Runge-Kutta-Fehlberg fourth fifth-order (RKF-45) method using the shooting technique. The impacts of the governing parameters on various profiles are illustrated with the help of graphs. The significant findings of the current model are that the escalating values of the Marangoni number deteriorations the velocity gradient of both dusty nanoliquids. The augmentation of dust particle mass concentration declines the thermal gradient of both liquid and particle phases. The boost up values of dust particle mass concentration and thermal dust parameter advances the rate of heat transfer.

This article is part of the following collections:
International Journal of Modelling and Simulation Best Paper Award

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.