Publication Cover
Statistics
A Journal of Theoretical and Applied Statistics
Volume 47, 2013 - Issue 2
144
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Semiparametric location mixtures with distinct components

&
Pages 348-362 | Received 25 Jan 2011, Accepted 05 Dec 2011, Published online: 31 Jan 2012
 

Abstract

We consider a two-component location mixture model with symmetric components, one of which is assumed to be known, the other is unknown. We show identifiability under assumptions on the tails of the characteristic function for the true underlying mixture, and also construct asymptotically normal estimates. The model is an extension of the contamination model in Bordes et al. [Semiparametric estimation of a two-component mixture model when a component is known, Scand. J. Statist. 33 (2006), pp. 733–752], and also related to a location mixture of one symmetric density as in Bordes et al. [Semiparametric estimation of a two component mixture model, Ann. Statist. 34 (2006), pp. 1204–1232]. We show by simulation that estimating the additional location parameter leads to a slight loss of efficiency as compared with the contamination model.

Acknowledgements

The authors gratefully acknowledge the financial support from the DFG, grant Ho 3260/3-1, and thank the referees for their helpful and constructive comments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.