Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 65, 2016 - Issue 4
178
Views
2
CrossRef citations to date
0
Altmetric
Articles

Tightening concise linear reformulations of 0-1 cubic programs

Pages 877-903 | Received 27 Aug 2013, Accepted 20 Aug 2015, Published online: 07 Oct 2015
 

Abstract

A common strategy for solving 0-1 cubic programs is to reformulate the non-linear problem into an equivalent linear representation, which can then be submitted directly to a standard mixed-integer programming solver. Both the size and the strength of the continuous relaxation of the reformulation determine the success of this method. One of the most compact linear representations of 0-1 cubic programs is based on a repeated application of the linearization technique for 0-1 quadratic programs introduced by Glover. In this paper, we develop a pre-processing step that serves to strengthen the linear programming bound provided by this concise linear form of a 0-1 cubic program. The proposed scheme involves using optimal dual multipliers of a partial level-2 RLT formulation to rewrite the objective function of the cubic program before applying the linearization. We perform extensive computational tests on the 0-1 cubic multidimensional knapsack problem to show the advantage of our approach.

AMS Subject Classifications:

Notes

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.