9
Views
0
CrossRef citations to date
0
Altmetric
Papers

Linear stability of a binary fluid layer with freezing

Pages 141-148 | Received 22 Dec 1984, Accepted 20 Jun 1985, Published online: 04 May 2011
 

Abstract

The linear convective instabilities of a fluid layer of binary alloy, cooled from above and consequently frozen at the bottom, are considered. Due to the density jump across the freezing interface, some light material is then released and diffused by pressure and composition gradients. As a result of a low cooling rate, the effect of thermal buoyancy is insignificant and the freezing interface advances upward at a slow speed by accumulating the solidified binary alloy. As Schmidt number PL approaches infinity, instabilities set in stationarily at the marginal state. Cellular convective modes are possible, provided a destabilizing compositional profile occurs in the fluid layer, while morphological modes, associated with non‐cellular convection, require a constitutional supercooling near the freezing interface. In the absence of a constitutional supercooling, morphological modes are not important and cellular convective modes become dominant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.