642
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional molecular dynamics study of aperture shape effect on nanojet ejection

, &
Pages 1001-1011 | Received 30 Apr 2009, Accepted 29 Nov 2009, Published online: 29 Jun 2011
 

Abstract

Three-dimensional molecular dynamics (MD) simulations of nanojet ejection with different aperture shapes are reported. The simulations use the Lennard-Jones 12-6 (LJ) potential to describe the intermolecular interaction. Using non-equilibrium MD, argon nanojet ejection is simulated under vacuum conditions. According to the analysis, different aperture shapes influence the ejection processes. The ejection speeds were 23.7 and 63.2 m/s respectively in the simulation. The speed of spurting atoms in type A nanojet was slower than the other types and it became more obvious when the process time increased. The variations in velocity, density, pressure, and temperature were found with the aid of MD. The liquid temperatures were set at 50, 100, 150, and 200 K, respectively, to examine nanojet break-up characteristics. The liquid temperature inside the nanojet was found to be a factor that induce break-up. A higher temperature led to faster nanojet break-up.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.