105
Views
6
CrossRef citations to date
0
Altmetric
Articles

Estimator-based fuzzy credit-assigned cerebellar model articulation controller design for vector-controlled induction motor drives

, , &
 

Abstract

This study has designed and implemented a novel speed controller and multi-estimator in a sensorless field-oriented control system for controlling induction motor (IM) speed. The speed controller was designed based on a fuzzy credit-assigned cerebellar model articulation controller (FCA-CMAC) to provide the online learning ability required for IM speed control. In contrast to the fuzzy cerebellar model articulation controller, the FCA-CMAC provides a faster convergence speed in the learning process for approximating a nonlinear function. Additionally, the multi-estimator provides a real-time adaptive estimation of motor speed and rotor resistance for achieving robustness for the IM controller against varying motor parameters. The multi-estimator is implemented by designing a cerebellar model articulation controller (CMAC) PI controller based on model reference adaptive system theory to adjust the adaptive pseudo-reduced-order flux observer parameters. Experiments performed on a 3-hp IM confirmed the effectiveness of the proposed approach. The experimental results confirm that the proposed control scheme achieves excellent dynamic and tracking responses to varying motor parameters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.