76
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Nonlinear Lyapunov-based control of a misaligned heteropolar magnetic bearing system

ORCID Icon, , ORCID Icon, &
Pages 563-579 | Received 26 May 2022, Accepted 14 May 2023, Published online: 19 Jul 2023
 

ABSTRACT

The dynamic behavior of an active magnetic bearing (AMB) mounted rotor was investigated through an analytical study conducted as part of this research work. A biased AMB model was developed, in which six electromagnets were supplied with a bias current I0, and their respective control currents. The magnetic load was obtained through a differentiated driving mode based on the virtual displacement principle. Motion equations were formulated, and simulations were performed to investigate the dynamic response of the misaligned AMB mounted on a high-speed rotor, considering rigid body motion, elastic motion, gyroscopic effect, shear deformation effect, and internal damping. Subsequently, a nonlinear novel direct Lyapunov-based controller derived from an energetic approach was applied and compared to an optimal regulator based on Hamilton-Jacobi-Bellman (HJB) equations. The Linear Quadratic Riccati (LQR) method required less energy, as expected, but the Lyapunov method was more efficient and demonstrated its ability to asymptotically control the plant instability as well as the misalignment effect. Finally, the method was applied to a milling machine spindle, and the controller was still able not only to handle the cutting forces generating disturbances but also to overcome the defect effect without any oscillation.

CO EDITOR-IN-CHIEF:

ASSOCIATE EDITOR:

Disclosure statement

No potential conflict of interest was reported by the author(s).

Nomenclature

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.