Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 42, 2022 - Issue 4
247
Views
1
CrossRef citations to date
0
Altmetric
Comment

Graphitic Carbon Nitride Platforms Modified with Gold-Aryl Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
 

ABSTRACT

Electrocatalytic hydrogen evolution reactions (HER) offer an enduring strategy for hydrogen fuel production and are vital for sustainable energy conversion and storage. To explore efficient and durable HER electrocatalysts, we fabricated gold-aryl nanoparticles (AuNPs-COOH) anchored on graphitic carbon nitride (g-C3N4) sheets by reducing aryldiazonium tetrachloroaurate(III) salt with sodium borohydride at room temperature in water. Two different nanocomposites, AuNPs-COOH-g-C3N4 (H) (higher amount of g-C3N4) and AuNPs-COOH-g-C3N4 (L) (lower amount of g-C3N4) were prepared. Contact angle measurements revealed that the increased surface wettability of the nanocomposites on glass and silicon wafer surfaces compared to pristine g-C3N4. Cyclic voltammetry, electrochemical impedance spectroscopy, double-layer capacitance, linear sweep voltammetry, and chronoamperometry measurements revealed that AuNPs-COOH-g-C3N4 (L) displayed the best HER performance in 0.1 M H2SO4 electrolyte. Overall, nanocomposites exhibited higher electrocatalytic activity compared to bare AuNPs-COOH and pristine g-C3N4 in current density and onset potential values. The AuNPs-COOH-g-C3N4 (L) nanocomposite offered an excellent electrocatalytic activity and displayed a current density of 53.4 mA/cm2 at 0.72 V vs RHE, which is nearly twice compared to bare AuNPs-COOH of 33.1 mA/cm2. In addition, the nanocomposite showed the lowest onset potential of 0.14 V vs RHE compared to 0.26 V and 0.31 V for AuNPs-COOH-g-C3N4 (H) and AuNPs-COOH, respectively.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/02603594.2022.2078316.

Additional information

Funding

CH acknowledges the support of the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [No. 2021R1A2C1093183, No.2021R1A4A1032746]; AAM acknowledges the University of Sharjah support of competitive grants [150-2142-017-P, 160-2142-029-P].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.