153
Views
12
CrossRef citations to date
0
Altmetric
Research Article

The mechanism of surface-indented protein-loaded PLGA microparticle formation: the effects of salt (NaCl) on the solidification process

, &
Pages 877-888 | Received 28 Apr 2003, Accepted 10 Aug 2004, Published online: 03 Oct 2008
 

Abstract

The purpose of this study was to evaluate ovalbumin (OVA) leakage pathways and to explore the mechanism of the surface-indented microparticle formation in the preparation of OVA-loaded microparticles. OVA-loaded poly (D,L-lactic-co-glycolic acid) (PLGA) microparticles were prepared by a water-in oil-in water (w/o/w) solvent evaporation method associated with varied NaCl (NaCl) concentrations and adjusted with urea at 1240 mOsm kg−1 in the external aqueous phase. To evaluate dichloromethane (DCM)-related OVA leakage, three stirring rates, 600, 800, 1000 rpm at 25° C were carried out during the solvent evaporation stage. Both DCM and OVA levels in the external phase medium and total dispersion were sampled and measured. The time course of particle characteristics was evaluated by microscopy or SEM photography. The surface adsorptive capacities of the prepared microparticles were measured by using bovine serum albumin conjugated with fluorescein isothiocyanate (FITC-BSA). The findings were that the DCM-related OVA leakage accounted for ∼34% of the total leakage. By combining NaCl in the external phase, a faster solidifying crust-like structure was formed as a barrier to remarkably reduce OVA loss and improve OVA content from 40.1 to 72.8 µg mg−1. The yield and OVA content for formulations containing NaCl were much improved by the ionic effect, in addition to the osmotic effect. The total entrapment efficiency was also highly increased from 43 to 72%. The formations of the crust-like surface structure of the microparticle were affected by entrapped drugs, salt content in the external phase and aqueous volume in the inner phase. A scheme was proposed to interpret the formation mechanism of the surface-indented microparticles. In comparison to the surface-smooth microparticles, the surface adsorptive capacities of the surface-indented microparticles were highly improved from 26.6 to 87.0%, determined by the adsorption of FITC-BSA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.