202
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Formulation and process parameters affecting protein encapsulation into PLGA microspheres during ethyl acetate-based microencapsulation process

&
Pages 1-12 | Received 06 Jan 2004, Accepted 10 May 2004, Published online: 03 Oct 2008
 

Abstract

The objective of this study was to investigate formulation and process parameters affecting protein encapsulation into PLGA microspheres during an ethyl acetate-based double emulsion microencapsulation process. Lysozyme was used as a model protein throughout this study. An aqueous lysozyme solution was emulsified in ethyl acetate containing 0.6 ∼ 1.2 g PLGA75 : 25. The primary emulsion was then transferred quickly to an aqueous phase to make a water-in-oil-in-water emulsion. Ethyl acetate quenching was performed on the double emulsion stirred for 5, 15, 30 or 45 min. The resultant microspheres were further hardened, collected and dried overnight under vacuum. The bicinchoninic acid assay was carried out to determine the quantity of lysozyme present in the aqueous continuous phase and inside the microspheres. While the primary emulsion was stirred without quenching, lysozyme in the inner water phase continued diffusing across the ethyl acetate phase into the aqueous continuous phase. Emulsion droplets were also broken into smaller ones with ongoing stirring; this event also contributed to lysozyme leaking out of the inner water phase. The amount of lysozyme leaching to the aqueous continuous phase ranged from 4.79 ± 2.1 to 51.9 ± 5.3% under the experimental condition. Ethyl acetate quenching stopped the primary emulsion droplets from being fragmented into smaller ones and caused PLA75 : 25 precipitation to form microspheres. As a result, the rate of ethyl acetate removal influenced lysozyme encapsulation efficiency, as well as microsphere size. Depending on the timing of ethyl acetate quenching, lysozyme encapsulation efficiencies were found to be 9.89 ± 4.53 ∼ 75.82 ± 6.55%. Optimization of the onset of ethyl acetate quenching and formulations could permit attainment of a desirable protein encapsulation efficiency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.