127
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Use of porous aluminosilicate pellets for drug delivery

&
Pages 423-437 | Received 02 Aug 2004, Accepted 10 Jan 2005, Published online: 03 Oct 2008
 

Abstract

Three pelletized porous aluminosilicate ceramics were obtained commercially and their potential to act as extended release drug delivery systems was assessed. The pellets were drug loaded using a vacuum impregnation technique. Factors such as the concentration of the loading solution and the porosity and bulk density of the ceramic influenced the drug loading. The release of drug from the pellets was extended as the drug was entrapped within their porous interior. The rate of release was influenced by the porous microstructure of the pellets and the physicochemical properties of the drug. Extrusion-spheronization was used to prepare pellets similar to the porous ceramics. The pellet formulations contained an aluminosilicate clay mineral (kaolin or halloysite), ethylcellulose 100 cps, ethanol and varying quantities of sucrose. The latter two components acted as pore forming agents. Diltiazem HCl was loaded into the pellets and its release was extended. The release rate could be modified by changing the quantity of sucrose included in the initial formulation, as this influenced the porous microstructure of the pellets. In halloysite-based products the release was further extended due to entrapment of the drug within the halloysite microtubules. Porous kaolin-based pellets were also prepared by cryopelletization. This involved freezing droplets of an aqueous suspension containing kaolin, sodium silicate solution and sodium lauryl sulphate. The resulting pellets were freeze-dried, which removed ice from them to leave pores behind. The pellets gave extended drug release with the release rate being influenced by the porous microstructure of the pellets and their microclimate pH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.