150
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Encapsulation of RIN-m5F cells within Ba2+ cross-linked alginate beads affects proliferation and insulin secretion

, &
Pages 663-676 | Received 21 Dec 2005, Accepted 02 Feb 2006, Published online: 08 Oct 2008
 

Abstract

The viability, proliferation and insulin production of RIN-m5F cells when loaded into alginate beads to form a 3D culture system has been investigated. The mechanism of alginate cross-linking (calcium ions vs barium ions), the addition of poly(L-lysine) (PLL) and poly(L-ornithine (PLO) and presence of different extra-cellular matrix proteins (ECM) influence the RIN-m5F cell behaviour. Cells in calcium alginate beads (CAB) proliferated and produced more insulin per cell than monolayer culture, but the physical properties of the beads were poor and they ruptured within a few days of culture. Barium alginate beads (BABs) provided a stable encapsulation method. Addition of PLL and PLO at concentrations above 0.1% w/v with the culture medium increased cell proliferation. With the addition of ECMs after bead formation there was a further increase in cell proliferation for certain combinations of ECM and PLO. It was concluded that RIN-m5F-loaded Ba-alginate beads (BABs), when incorporated with varying concentrations of poly (L) lysine (PLL), poly (L) ornithine (PLO) in the presence of extra-cellular matrix proteins (ECMs) were superior to both tissue culture and RIN-m5F-loaded Ca-alginate beads (CABs) in terms of physical stability, cell proliferation and insulin production.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.