166
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Sodium fusidate-poly(D,L-lactide-co-glycolide) microspheres: Preparation, characterisation and in vivo evaluation of their effectiveness in the treatment of chronic osteomyelitis

, , , , , & show all
Pages 577-595 | Received 02 Jan 2007, Accepted 29 Apr 2007, Published online: 08 Oct 2008
 

Abstract

Purpose: The aim of this study was to prepare poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing sodium fusidate (SF) using a double emulsion solvent evaporation method with varying polymer:drug ratios (1:1, 2.5:1, 5:1) and to evaluate its efficiency for the local treatment of chronic osteomyelitis.

Methods: The particle size and distribution, morphological characteristics, thermal behaviour, drug content, encapsulation efficiency and in vitro release assessments of the formulations had been carried out. Sterilized SF-PLGA microspheres were implanted in the proximal tibia of rats with methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. After 3 weeks of treatment, bone samples were analysed with a microbiological assay.

Results: PLGA microspheres between the size ranges of 2.16–4.12 µm were obtained. Production yield of all formulations was found to be higher than 79% and encapsulation efficiencies of 19.8–34.3% were obtained. DSC thermogram showed that the SF was in an amorphous state in the microspheres and the glass transition temperature (Tg) of PLGA was not influenced by the preparation procedure. In vitro drug release studies had indicated that these microspheres had significant burst release and their drug release rates were decreased upon increasing the polymer:drug ratio (p < 0.05). Based on the in vivo data, rats implanted with SF-PLGA microspheres and empty microspheres showed 1987 ± 1196 and 55526 ± 49086 colony forming unit of MRSA in 1 g bone samples (CFU/g), respectively (p < 0.01).

Conclusion: The in vitro and in vivo studies had shown that the implanted SF loaded microspheres were found to be effective for the treatment of chronic osteomyelitis in an animal experimental model. Hence, these microspheres may be potentially useful in the clinical setting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.