228
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

3-Hydroxyhexanoate-based polycationic nanoparticle system for delivering reprogramming factors

, , , &
Pages 332-340 | Received 08 Oct 2019, Accepted 25 Mar 2020, Published online: 28 Apr 2020
 

Abstract

Aim: In this study, we aimed to develop a polycationic non-viral carrier for the delivery of the reprogramming factors to the L929 fibroblast cell.

Methods: We have prepared (3-hydroxybutyrate-co-3-hydroxyhexanoate) PHBHHx-based nanoparticles with the solvent diffusion method. Cytotoxicity of PXNs was determined via MTT assay. Transfection efficiency was evaluated via screening GFP expression by fluorescence microscopy. The expression of reprogramming factors (Oct4, Klf4, and Sox2) was determined by RT-qPCR.

Results: PXNs with 32.9 ± 0.41 mV zeta potential and 177.6 ± 0.80 nm size were used for transfection of L929 Fbroblast cells. The percentage of cell viability of PXN were between 91.8%(±2.9) and 42.1%(±1.3). The transfection efficiency was found as 71.6%(±3,5). According to RT-qPCR data, the rate of transfection factors was significantly increased after the 11th cycle compared to non-transfected cells. Based on these results, it can be concluded that newly developed PXN is thought to be an effective tool for reprogramming cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.