168
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours

, , , , &
Pages 575-589 | Received 26 Aug 2002, Accepted 04 Apr 2003, Published online: 09 Jul 2009
 

Abstract

It has previously been found that the anti-leukaemia agent Arsenic Trioxide (ATO) causes vascular shutdown in solid tumours and markedly sensitizes tumours to hyperthermia. The present study was designed to evaluate the mechanism of action and dose-dependence of ATO-induced thermosensitization in FSaII and SCK murine tumours. The role of oxidative stress was studied by observing ATO-induced vascular shutdown in vivo and ATO-induced endothelial cell adhesion molecule expression in vitro in the presence or absence of an antioxidant. It was found that a dose as low as 2 mg/kg ATO impaired vascular function, as estimated by 86Rb uptake, in the tumour. The degree of tumour growth delay induced by 1 h of hyperthermia at 42.5°C, applied 2 h after ATO injection, was proportional to the dose of ATO administered. In addition, it was found that ATO can directly thermosensitize tumour cells in vitro. The development of massive tissue necrosis in the tumour was observed in the days after treatment, especially with the combination of ATO and heating. ATO-induced adhesion molecule expression in vitro was abolished when the anti-oxidant n-acetyl-cysteine (NAC) was introduced prior to exposure, while the addition of NAC in vivo partially blocked ATO-induced vascular shutdown. These results suggest that the expression of adhesion molecules by the vasculature due to oxidative stress contribute to the ATO-induced selective tumour vascular effects observed and that the clinical use of ATO to increase tumour thermosensitivity via direct cellular and vascular effects appears feasible.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.