505
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Histological, histochemical and electron microscopic changes of the placenta induced by maternal exposure to hyperthermia in the rat

, , , &
Pages 29-44 | Received 08 Dec 2003, Accepted 28 Apr 2004, Published online: 09 Jul 2009
 

Abstract

Both clinical and experimental investigations have shown that maternal hyperthermia during critical stages of embryo development can induce malformations in the offspring. Studies of the effect of heat stress on the placental functions are limited to the ewes, but that on microscopic structure is unknown. In the present study, rats were exposed to 41 or 42°C for 1 h on gestation day (GD) 9. The controls were sham treated. Fetuses and placentas were collected on GD 20. Intrauterine growth retardation (IUGR) and several craniofacial malformations were observed in the fetuses of the heat-treated group. The placentas of the 42°C group were significantly lighter in weight than those of the control. Light microscopy (LM) revealed thickening, hyalinization and occasional lymphocytic infiltration of the decidua basalis. Giant cells were prominent and glycogen cells had degenerated, leaving behind large cysts in the basal (spongy) zone. Best’s carmine stain with or without diastase indicated the reduction in number and degeneration of glycogen cells and cyst formation. The labyrinthine zone was relatively thin in comparison to that of the controls. Perivascular fibrosis and paucity of vascularization were other features of the placentas of the hyperthermia group. Electron microscopy (EM) revealed lipid droplet accumulation in the trophoblast, the presence of myelin bodies and an increased production of collagen in the basal zone. Perivascular fibrosis appeared to have contributed to placental barrier thickening. EM also revealed accumulation of glycogen and lipid droplets in the trophoblasts and fibrin secretion into the extracellular space of the labyrinthine zone. These data suggest that placental pathology possibly contributes to fetal growth retardation in maternally heat-stressed rat fetuses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.