233
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes

, , , &
Pages 561-574 | Received 17 Dec 2004, Accepted 04 Apr 2005, Published online: 09 Jul 2009
 

Abstract

MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2—in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.