187
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effects of whole-bodyhyperthermia on the canine central nervous system

Pages 203-216 | Published online: 09 Jul 2009
 

Abstract

It has been reported that central nervous system (CNS) tissue may be more heat labile than other tissues of the body. However, no definite information has been available on how much heat CNS tissue can tolerate without sustaining damage during whole-body hyperthermia, especially in a chronic stage. In this study, whole-body hyperthermia was induced in dogs by extracorporeal heating of blood, to determine the effects 7 days after hyperthermia on the canine brain and spinal cord. The temperatures of both the brain and the spinal cord were raised to 42.0 0.1oC and maintained at that level for 60min. Seven days later, all of the dogs were sacrificed by transcardial perfusion using 10% formaldehyde phosphate buffer for microscopic examination. The thermal dose resulted in neither microscopic damage to the CNS nor neurological symptoms, as determined by comparison of microscopic and neurological findings with those of dogs whose brain and spinal cord temperatures were maintained at 37.0oC for 60min. The findings suggest that, for medical purposes, whole-body hyperthermia appears promising for application at a thermal dose of up to 42.0oC for 60min.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.