137
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Robust testing for stationarity of global surface temperature

Pages 1349-1361 | Received 24 Jan 2012, Accepted 11 Mar 2013, Published online: 04 Apr 2013
 

Abstract

Surface temperature is a major indicator of climate change. To test for the presence of an upward trend in surface-temperature (global warming), sophisticated statistical methods are typically used which depend on implausible and/or unverifiable assumptions, in particular on the availability of a very large number of measurements. In this paper, the validity of these methods is challenged. It is argued that the available series are simply not long enough to justify the use of methods which are based on asymptotic arguments, because only a small fraction of the information contained in the data is utilizable to distinguish between a trend and natural variability. Thus, a simple frequency-domain test is proposed for the case when all but a very small number of frequencies may be corrupted by transitory fluctuations. Simulations confirm its robustness against short-term autocorrelation. When applied to a global surface-temperature series, significance can be achieved with far fewer frequencies than required by conventional tests.

2010 Mathematics Subject Classifications :

Acknowledgements

I very much appreciate the referees’ comments, which substantially improved this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.