175
Views
1
CrossRef citations to date
0
Altmetric
Articles

The balanced discrete Burr–Hatke model and mixing INAR(1) process: properties, estimation, forecasting and COVID-19 applications

, &
Pages 1227-1250 | Received 10 Mar 2022, Accepted 14 Mar 2023, Published online: 27 Mar 2023
 

Abstract

The main concern of this paper is providing a flexible discrete model that captures every kind of dispersion (equi-, over- and under-dispersion). Based on the balanced discretization method, a new discrete version of Burr–Hatke distribution is introduced with the partial moment-preserving property. Some statistical properties of the new distribution are introduced, and the applicability of proposed model is evaluated by considering counting series. A new integer-valued autoregressive (INAR) process based on the mixing Pegram and binomial thinning operators with discrete Burr–Hatke innovations is introduced, which can model contagious data properly. The different estimation approaches of parameters of the new process are provided and compared through the Monte Carlo simulation scheme. The performance of the proposed process is evaluated by four data sets of the daily death counts of the COVID-19 in Austria, Switzerland, Nigeria and Slovenia in comparison with some competitor INAR(1) models, along with the Pearson residual analysis of the assessing model. The goodness of fit measures affirm the adequacy of the proposed process in modeling all COVID-19 data sets. The fundamental prediction procedures are considered for new process by classic, modified Sieve bootstrap and Bayesian forecasting methods for all COVID-19 data sets, which is concluded that the Bayesian forecasting approach provides more reliable results.

Mathematics Subject Classifications:

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.