310
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effects of intense cooling on microstructure and properties of friction-stir-welded Ti–6Al–4V alloy

, , &
Pages 209-219 | Received 24 Apr 2017, Accepted 28 Jul 2017, Published online: 27 Aug 2017
 

ABSTRACT

Friction stir welding (FSW) was used to join Ti–6Al–4V alloy in air and under intense cooling conditions. The results show that the application of liquid nitrogen is beneficial in decreasing the peak temperature and in reducing the extent of the high-temperature region during welding, leading to a smaller stir zone (SZ). Intense cooling can lead to refined and homogeneous grains in the SZ, resulting in increased microhardness. The FSW joint produced with intense cooling had a tensile strength of 1020 MPa, which is nearly equivalent to that of the base material and is up to 2.6% higher than for the air-cooled joint. The fractographs for both types of joint were characterised by dimples, indicating that the fractures were ductile.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.