202
Views
2
CrossRef citations to date
0
Altmetric
Research Article

High aspect ratio TiO2–Mn3O4 heterostructure: proficient nanorods for pathogen inhibition and supercapacitor application

, , , , , & show all
Pages 1687-1696 | Received 30 Nov 2022, Accepted 10 Feb 2023, Published online: 23 Feb 2023
 

ABSTRACT

Supercapacitors are in great demand owing to necessity of clean and sustainable energy. Alternately, waterborne microbial infections are prime cause of diseases. So, there is demand for synthesis of novel materials with multifunctional adaptability. Herein, heterostructured TiO2–Mn3O4 composite nanorods were synthesised by two-step methods. In first step, TiO2 nanorods were prepared using electrospinning and by hydrothermal method Mn3O4 nanoparticles were attached to TiO2 surface. The composite heterostructure was described using sophisticated procedures such as X-ray diffraction, Fourier transforms infrared spectroscopy, Scanning electron and Transmission electron microscopy. Antimicrobial studies were probed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus pathogens. The results demonstrated that TiO2–Mn3O4 composite has more heightened antimicrobial activity than pristine TiO2. Additionally, the synthesised TiO2–Mn3O4 composite was implied as an electrode for supercapacitors. The definite capacitance of TiO2–Mn3O4 nanocomposite calculated at a potential scan rate of 5 mV/s was as amplified as 470 Fg−1.

Acknowledgements

No funding was received for this project.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.