93
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Alignment of liquid crystal and dichroic dye molecules in mixed Langmuir and Langmuir-Blodgett films

Pages 281-288 | Published online: 11 Nov 2010
 

Abstract

A study of dichroic dye-liquid crystal mixtures (guest-host systems) in monolayers formed at a gas-liquid interface (Langmuir films) and at a solid surface (Langmuir-Blodgett films) has been made. As a host 4- n -octyl-4′-cyanobiphenyl (8CB) or 4- n -pentyl-4″-cyano- p -terphenyl (5CT) were chosen, while three dichroic azo dyes with various molecular structures were used as guest species. The dyes were added to the liquid crystal matrices at a concentration corresponding to the whole range of molar fractions and the surface pressure-mean molecular area isotherms for Langmuir films were recorded. On the basis of the isotherms, conclusions about the molecular organization and the miscibility of the components in the ultrathin films were drawn. The Langmuir films were transferred onto the quartz plates at surface pressures below the collapse point. The polarized absorption spectra of the Langmuir-Blodgett films were recorded and information about the alignment and intermolecular interactions in the mixtures of the non-amphiphilic dichroic dyes and the liquid crystals with strongly polar terminal groups were obtained.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.