156
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Experimental characterization of hexatic smectic phases through electro-optic studies and dielectric relaxation spectroscopy

, , &
Pages 119-125 | Received 14 Jul 2003, Accepted 15 Sep 2003, Published online: 19 May 2010
 

Abstract

The electro-optic and complex dielectric behaviour of an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4′-(n-butanoyloxyprop-1-oxy)biphenyl-4-carboxylate, having chiral SmCA* and hexatic smectic phases, have been investigated. Complex dielectric permittivities were measured as a function of frequency, d.c. bias field and temperature. Spontaneous polarization was measured by the current reversal technique; tilt angle was measured under a polarizing microscope using a low frequency electric field. The electro-optic properties and dielectric behaviour of the material are compared with results obtained by DSC and polarizing optical microscopy. Dielectric relaxation processes in SmCA* and hexatic smectic phases were determined. The dielectric strength at the SmCA* to hexatic smectic phase transition is discussed in terms of coupling between the long range bond orientational order and smectic C director. It seems from the results of spontaneous polarization and dielectric relaxation spectroscopy that the material might possess an additional phase between the SmCA* and hexatic smectic I* phases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.