62
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A convenient synthesis and the mesomorphic properties of new chiral ferroelectric thiobenzoates

Pages 1159-1165 | Received 03 Mar 2004, Accepted 06 Apr 2004, Published online: 12 May 2010
 

Abstract

A secondary chiral (R)-(−)-2-alcohol underwent the Mitsunobu reaction with triphenylphosphine, diethyl azodicarboxylate and ethyl 4-hydroxybiphenylcarboxylate, resulting in the desired (S)-(+)-product with high enantiomeric purity (>99% ee), with the chiral branched chain attached to the biphenyl. This method is operationally simple and provides the very important chiral precursor in good yields (62% in dry THF and 72% in dry Et2O). The condensation of the (S)-(+)-acid chloride from this material and a suitable 4-n-alkylthiophenol in toluene in the presence of pyridine or triethylamine furnishes the chiral (S)-(+)-thiobenzoate liquid crystals in good yields (80–83% in pyridine and 65–68% in Et3N). (S)-(+)-4-(1-Methylheptyloxy)biphenyl 4-alkylthiobenzoates are abbreviated (S)-MHOBSn , where n varies from 4 to 10 and denotes the number of carbon atoms in the alkyl chain. DSC, polarizing microscopy and X-ray diffraction showed that the (S)-MHOBSn series possesses a rich phase polymorphism: two highly ordered tilted phases CrG* and SmI*, as well as the ferroelectric smectic C (SmC*) and chiral nematic (N*) phase. In this series, the seldom observed transition between the chiral phases SmI*–SmC* is seen. All the compounds possess stable enantiotropic SmC* and N* phases. The existence of weak intermolecular hydrogen-bonding in (S)-MHOBSn was confirmed by FTIR spectroscopy.

Notes

Presented in part at the Fifteenth Conference on Liquid Crystals, 13–17 October 2003, Zakopane, Poland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.