156
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Computational modelling of nematic phase ordering by film and droplet growth over heterogeneous substrates

&
Pages 1397-1413 | Received 24 May 2007, Accepted 07 Aug 2007, Published online: 11 Dec 2007
 

Abstract

This paper presents a computational study of defect nucleation associated with the kinetics of the isotropic‐to‐nematic phase ordering transition over heterogeneous substrates, as it occurs in new liquid crystal biosensor devices, based on the Landau–de Gennes model for rod‐like thermotropic nematic liquid crystals. Two regimes are identified due to interfacial tension inequalities: (i) nematic surface film nucleation and growth normal to the heterogeneous substrate, and (ii) nematic surface droplet nucleation and growth. The former, known as wetting regime, leads to interfacial defect shedding at the moving nematic‐isotropic interface. The latter droplet regime, involves a moving contact line, and exhibits two texturing mechanisms that also lead to interfacial defect shedding: (a) small and large contact angles of drops spreading over a heterogeneous substrate, and (b) small drops with large curvature growing over homogeneous patches of the substrate. The numerical results are consistent with qualitative defect nucleation models based on the kinematics of the isotropic–nematic interface and the substrate–nematic–isotropic contact line. The results extend current understanding of phase ordering over heterogeneous substrates by elucidating generic defect nucleation processes at moving interfaces and moving contact lines.

Acknowledgements

This work was supported by a grant from Natural Science and Engineering Research Council of Canada. BW is grateful for financial support from a Eugenie Ulmer Lamothe scholarship at McGill University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.