320
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Structure peculiarities and optical properties of nanocomposite: 5CB liquid crystal–CTAB-modified montmorillonite clay

, , , , , , & show all
Pages 263-270 | Received 19 Jun 2009, Accepted 25 Nov 2009, Published online: 04 Mar 2010
 

Abstract

The effects of the modification of natural layered montmorillonite (MMT) clay by cetyltrimethylammonium bromide (CTAB) cations on the structure and optical properties of the composite material based on this mineral (4.5%mass) and a nematic liquid crystal (LC), 4-pentyl-4'-cyanobiphenyl (5CB), have been investigated. As shown by small-angle X-ray diffraction and infrared (IR) spectroscopy experiments, this modification results in a significant expansion of the interplane spaces in the MMT nanoparticles and a considerable growth of their surface affinity to the 5CB molecules, which allows the LC molecules to penetrate into the MMT galleries and additionally expand these galleries. According to IR studies, this heterosystem possesses van der Waals interactions between its components on the phase separation boundary and, as a result, orientation alignment of the molecules in the near-surface layers occurs. These interactions specify the electro-optical properties of the composite. When an electric field is applied to a system, the light transmittance of the material increases due to the induced orientation of the LC dimers. This LC ordering remains even after the voltage is shut off, i.e. the system shows an electro-optical memory effect.

Acknowledgements

This work was partially funded by the NAS of Ukraine under the Program ‘Nanophysics and Nanoelectronics’, project VC-138. The authors would like to thank Dr N. Lebovka and A. Tolochko for their help in these investigations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.