171
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Inductive effect for the phase stability in hydrogen bonded liquid crystals, x-(p/m)BA:9OBAs

, , , &
Pages 184-196 | Received 04 Aug 2013, Accepted 16 Sep 2013, Published online: 04 Nov 2013
 

Abstract

A new series of hydrogen bonded liquid crystal (HBLC) complexes, made up with substituted benzoic acids (BAs) and nonyloxy benzoic acid, viz., x-(p/m)BA:9OBAs are reported for x = F, Cl, Br and –CH3 substituted at para (p) or meta (m) positions of BA moiety. Proton nuclear magnetic resonance (1H-NMR) spectrum confirms the HBLC complex. Infra red (IR) spectrum confirms linear, double and complementary type of hydrogen bonding (HB) between x-(p/m)BAs and 9OBA. The liquid crystal (LC) phases are characterised by polarisation optical microscopy (POM) and differential scanning calorimetry (DSC) techniques. x-(p/m)BA:9OBA exhibit N, C and G LC phase variance. HB induces tilted phases and enhances LC phase stability. The influence of configuration, size, electronegativity, electron directing capacity and inductive nature of substituent (x) is investigated for the stability of LC phases. An overview of the LC phase data indicates predominant ‘negative inductive effect’ in HBLCs with electron withdrawing substituents. Inductive effect operates effectively for para substitutions. Results are discussed in the wake of reports in other HBLCs.

Funding

The authors acknowledge the grant provided by Department of Science and Technology, India, DST/SR/S2/CMP-0063/2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.