577
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Photoluminescent nematic liquid crystalline elastomer actuators

, , , &
Pages 1821-1830 | Received 09 Jul 2014, Accepted 30 Jul 2014, Published online: 27 Aug 2014
 

Abstract

Nematic liquid crystalline elastomer (LCE) actuators possessing both photoluminescent (PL) and stimuli-responsive functions were fabricated and studied. PL-dyes (1-pyrenemethyl acrylate and 4-bromo-2,6-bis-(1ʹ-methyl-benzimidazolyl) pyridine loaded with Eu(III) ion) were synthesised and characterised, and then the dyes were mixed with an acrylate side-on liquid crystalline monomer, a cross-linker and a photo-initiator. Through magnetic field alignment, well-defined LCE micropillar PL actuators were fabricated from the mixed samples by a method combining soft lithography and photo-polymerisation/photo-cross-linking. Microscopic observations indicated that the LCE micropillars showed reversible thermomechanical deformation at the nematic-to-isotropic transition temperature. During the reversible contraction and extension process, the LCE actuator containing 1-pyrenemethyl moieties showed stable photoluminescence, while for the LCE actuator doped with 4-bromo-2,6-bis-(1-methyl-benzimidazolyl)pyridine/Eu(III) complex, the PL emission was quenched at about 100°C, which was before the pillars contraction occurring at a higher temperature. When cooled down to room temperature, the contracted LCE micropillars recovered their original shape and the initial PL emission state. The micron-sized LCE actuators can be used for thermomechanical devices and machines with different PL functions at the same time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.