381
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Effect of CdSe quantum dots doping on the switching time, localised electric field and dielectric parameters of ferroelectric liquid crystal

, , &
Pages 1889-1896 | Received 24 Jun 2014, Accepted 26 Aug 2014, Published online: 19 Nov 2014
 

Abstract

A systematic study highlighting the effect of cadmium selenide quantum dots (CdSe QDs) with varying concentrations of 0.05, 0.10 and 1.0 wt% doping on the electrooptical and dielectric parameters of ferroelectric liquid crystal (FLC) is presented. No considerable change is observed in phase transition temperature and tilt angle with CdSe QDs doping at lower and higher dopant level. Substantial enhancement of localised electric field at higher doping level (1.0 wt%) of CdSe QDs manifested the ≈48% reduction in the switching response of FLC nanocolloids at 30°C. Reduction in the spontaneous polarisation, dielectric constant and absorption strength could be attributed to the antiparallel correlation among dopant and matrix molecules, ion capturing in the capping additive layer and enhancement of the rotational viscosity of the nanocolloids, respectively. Goldstone mode relaxation frequency is found to be decreased with doping up to 0.10 wt% concentration and showed reverse effect at higher QDs concentration. QDs doping effect on the photoluminescence intensity is also discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.