325
Views
4
CrossRef citations to date
0
Altmetric
Invited Article

Nematic phase transition and texture dynamics

Pages 2300-2319 | Received 16 May 2016, Published online: 23 Nov 2016
 

ABSTRACT

Research advances over the past decade in the areas of nematic phase transition and texture dynamics are reviewed. Research studies applying theoretical techniques able to resolve the length and time scales inherent to liquid crystal (LC) dynamics are focused on: coarse-grained molecular dynamics and continuum mechanics. The focus on LC dynamics is due to their importance in both fundamental and technological processes involving complex LC textures and texture transitions. Meta-stable textures frequently occur in soft matter systems, thus knowledge of LC textures that result in free energy minima for a specific system is not sufficient to characterise its behaviour. Resolution of dynamics enables researchers to predict with more accuracy observable LC textures and texture transitions. As is reflected in the reviewed research, LC dynamics simulations have enabled both validation of simulations with existing experimental observations and predictive results, which augment direct experimentation. While the outlook is positive as a result of this, several key challenges stymie further progress: (i) the availability of validated open-source software implementing nematic dynamics simulation methods, (ii) development of suitable visualisation and characterisation methods for transient three-dimensional LC textures, and (iii) inclusion of thermal fluctuations in nematic dynamics models.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.