195
Views
5
CrossRef citations to date
0
Altmetric
Articles

Transition radiation in cholesteric liquid crystal

, &
Pages 1104-1115 | Received 07 Nov 2016, Accepted 19 Nov 2016, Published online: 06 Dec 2016
 

ABSTRACT

We consider a constant velocity charged particle travelling in an arbitrary direction by a cholesteric liquid crystal. We calculate the time-dependent-induced polarisation in the cholesteric by the electric field generated by the charged particle. Thus, we express the radiation field originated by the induced dipole distribution in the cholesteric in terms of the cholesteric susceptibility. To simplify our procedure, we write Maxwell equations and the constitutive non-local equation for the cholesteric, in the Fourier space since in this representation the equations turn to be simple difference equations. We solve these equations iteratively by assuming small values for the cholesteric birefringence to find the first-order electric field produced by the charge particle immersed in the cholesteric. This allows us to obtain the dominant contributions of the radiation field one of which is the usual Cherenkov effect. We focus in the terms occurring for hypoluminic charged particle and calculate the radiated energy as a function of observing angle, frequency, velocity and direction with respect to the cholesteric axis.

Graphical Abstract

Acknowledgement

We ackowledge partial support from Conacyt and grant DGAPA-PAPITT IN 101316.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.