2,834
Views
115
CrossRef citations to date
0
Altmetric
Invited Articles

Cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase

, , , &
 

ABSTRACT

The synthesis and characterisation of several members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkane (CBnCB) and the 1-(4-cyanobiphenyl-4′-yloxy)-ω-(4-cyanobiphenyl-4′-yl) alkane (CBnOCB) homologous series are reported. The new odd members described CB5CB, CB13CB, CB4OCB, CB8OCB and CB10OCB all exhibit twist-bend nematic and nematic phases. The members of these series already reported in literature, CB7CB, CB9CB, CB11CB and CB6OCB, were also prepared in order to allow for a direct comparison of their transitional properties. The properties of these dimers are also compared to those of the corresponding members of the 1,ω-bis(4-cyanobiphenyl-4,-yloxy) alkanes (CBOnOCB). For any given total spacer length, for odd members of these series, the nematic–isotropic transition temperatures and associated entropy changes are greatest for the CBOnOCB dimer and lowest for the CBnCB dimer. These trends are understood in terms of molecular shape. For short spacer lengths, the twist-bend nematic–nematic transition temperature (TNTBN) is higher for the CBnOCB series than for the CBnCB series but this is reversed as the spacer length increases. Of the CBOnOCB dimers, a virtual value of TNTBN was estimated for CBO3OCB and TNTBN was measured for CBO5OCB. These values are considerably lower than those observed for the corresponding members of the CBnCB or CBnOCB series. The dependence of TNTBN on molecular structure is discussed not only in terms of the molecular curvature but also in the ability of the molecules to pack efficiently. As the temperature range of the preceding nematic phase increases, so the twist-bend nematic–nematic transition entropy change decreases and the transition approaches second order for the longer spacers. For comparative purposes, the transitional behaviour of the even-membered dimers CB6CB, CB5OCB and CBO4OCB is reported and differences accounted for in terms of molecular shape.

Graphical Abstract

This article is part of the following collections:
The Luckhurst-Samulski Prize

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.