372
Views
15
CrossRef citations to date
0
Altmetric
Article

Cyano terminated tolane compounds for polymer dispersed liquid crystal application: relationship between cyano terminated tolane based molecular structures and electro-optical properties

, , , , , , , & show all
Pages 1771-1782 | Received 05 Feb 2018, Accepted 04 Jun 2018, Published online: 19 Jun 2018
 

ABSTRACT

The structures of the liquid crystal (LC) molecules have a key role in impacting the electro-optical performance of a polymer dispersed liquid crystal (PDLC) film. In this paper, the relationship between the LC molecular structures and the electro-optical properties of PDLC films is investigated based on an unexplored cyano-terminated tolane compounds (CTTCs) doped E8 LCs/UV polymers system. Due to the high polarity of CTTCs, LCs doped with the cyano-terminated tolane (CTT) molecules exhibit high birefringence and large positive dielectric anisotropy. On the whole, PDLC films doped with the CTT molecules exhibit a lower driving voltage than that doped with the pure E8. More excitingly, PDLC films based on CTT molecules with larger length-to-width ratio and longer conjugated system show higher contrast ratio (CR) and faster response time. Eventually, the mechanism of the effects of CTT-based molecular structures and the relationship between the electro-optical performance of PDLC films and CTT molecules are illustrated. This work paves a new way for optimising the electro-optical properties of PDLC films.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant number 51573003, 51561135034, 51573101].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.