313
Views
23
CrossRef citations to date
0
Altmetric
Invited Article

A command layer for anisotropic plasmonic photo-thermal effects in liquid crystal

, , , , , ORCID Icon, , , & show all
Pages 2214-2220 | Received 02 Jun 2018, Published online: 04 Sep 2018
 

ABSTRACT

Photo-anisotropic properties of a particular command layer for Liquid Crystals (LCs), based on azo-benzene material, are exploited to control the photo-thermal response of a single layer of homogeneously and uniformly distributed Au nanoparticles, immobilised on a glass substrate. Experiments demonstrate that the intrinsic anisotropy of materials can influence the photo-thermal response of plasmonic systems. Indeed, the resonant absorption of radiation by plasmonic subunits is followed by a noticeable increase of their temperature. However, the thermal response observed in presence of a homogeneous and random array of AuNPs directly exposed to air or embedded in ice is typically isotropic; on the contrary, a homogenous, yet thin, coating made of a particular command layer for LCs, deposited on a large-area carpet of AuNPs, influences their thermal response in an anisotropic way. In particular, the temperature increase, induced by pumping with a laser source of resonant wavelength with the plasmonic AuNPs, strongly depends on the alignment direction of the command layer. This effect makes the command layer of particular interest for its capability to drive intriguing optically induced ‘thermal-reorientational’ effects in a liquid crystal film.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was partially supported by the Air Force Office of Scientific Research (AFOSR), Air Force Research Laboratory (AFRL), US Air Force, under grant FA9550-18-1-0038 (P. I. L. De Sio, EOARD 2017–2020) and the Materials and Manufacturing Directorate, AFRL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.