567
Views
6
CrossRef citations to date
0
Altmetric
Invited Article

Sunlight helps self-healing of liquid-crystalline gels of lignin-graft PMMA doped with GO and azobenzene

, , &
Pages 1170-1179 | Received 20 Oct 2019, Published online: 03 Jan 2020
 

ABSTRACT

Self-healing soft matters have attracted much attention because of their extraordinary performance for extending working life of materials. To utilise sunlight to help self-healing of liquid-crystalline gels composed of one low-mass liquid crystal (5CB) and one hyperbranched polymer (lignin-graft-PMMA), a low content of graphene oxide (GO) and one azobenzene compound are doped as photoresponsive additives. Upon irradiation of UV light, the azobenzene can induce gel-sol transition due to the photoinduced molecular cooperative motion, thus surface dents can be repaired. On the other hand, GO functions as the nanoscale heat source because of the photothermal effect under exposure of visible (VIS) or NIR light, heating the gel to undergo gel-sol transition for mending surface cracks. In addition, the mechanical properties of the gels are also improved by addition of GO. This NIR-VIS-UV light responsive liquid-crystalline gel shows highly effective gel-sol transition upon direct solar radiation because of the coexistence of both photochemical and photothermal effect. Furthermore, these sunlight-assistant self-healing gels also show anisotropy and orientation just like other liquid-crystalline materials, enabling them to find various advanced applications with longer service life.

GRAPHICAL ABSTRACT

Acknowledgments

We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No.s 51573005, 51773002, 51921002) and the National Key R&D Program of China (2018YFB0703702).

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary Material

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [51573005, 51773002, 51921002]; The National Key Reseach and Development Project of China [2018YFB0703702].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.