218
Views
3
CrossRef citations to date
0
Altmetric
Invited Articles

Aided- and self-assembly of liquid crystalline nanoparticles in bulk and in solution: computer simulation studies

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 74-97 | Received 31 Oct 2022, Published online: 06 Feb 2023
 

ABSTRACT

We review computer simulation studies of aided and self-assembly of nanoparticles that are decorated with liquid crystalline (mesogenic) ligands, termed hereafter as liquid crystalline nanoparticles (LCNPs). In bulk, LCNPs self-assemble into ordered morphologies, typically displaying a polydomain structure. We demonstrate that a range of monodomain morphologies can be grown by changing the density of ligands and employing external fields of specific symmetry, which act on mesogens. It is also demonstrated that the speed of self-assembly of LCNPs with chromophoric (e.g. azobenzene) mesogens can be increased by applying illumination at a certain wavelength and polarisation. Another case study covers the formation of an interconnected macromolecular network in a solution of the LCNPs in a polar solvent. Here, the network structure depends strongly on the decoration pattern of the LCNPs. Finally, the adsorption of LCNPs on a compatible liquid crystalline brush is discussed with a focus on the prerequisites and optimal conditions for this phenomenon. The review demonstrates the ability of classical particle-based models to produce a molecular-based understanding of the structure and interactions of LCNPs, and also to reproduce a wide set of physicochemical phenomena related to LCNP aided- and self-assembly processes.

Graphical abstract

Acknowledgments

AS, DY and JI are grateful to the Ukranian Army for protection during the work on this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.