316
Views
2
CrossRef citations to date
0
Altmetric
Macromolecular Liquid Crystals

A facile photoinitiated polymerisation route for the preparation of photonic elastomers with chiral nematic order

, , , &
Pages 1143-1150 | Received 19 Jan 2023, Published online: 20 Apr 2023
 

ABSTRACT

Photonic crystal elastomers that can change colour upon stretching or compression have potential applications in mechanical sensors and optical coatings. However, facile synthetic strategies are required for these materials to be made on a commercially viable scale. To address this issue, we report a photoinitiated polymerisation method to prepare stretchable chiral nematic cellulose nanocrystal (CNC) elastomer composites that exhibit reversible visible colour upon the application of mechanical stress. The initial CNC-elastomer composite is colourless, but when it is stretched (or compressed), the helical pitch of the chiral nematic structure is reduced to lengths corresponding to the wavelengths of the visible region, resulting in colouration. By increasing the percentage elongation of the material (ca. 50–300%), the structural colour can be tuned from red to blue. The colour of the material was characterised by reflectance optical spectroscopy and reflectance circular dichroism to confirm the wavelength and polarisation of the reflected light.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary data

Supplemental data for this article can be accessed online at https://doi.org/10.1080/02678292.2023.2200265.

Additional information

Funding

C.E.B. thanks the Banting Postdoctoral Fellowship and Killam Postdoctoral Fellowship for funding. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Discovery Grant).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.