25
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

On the parallel-perpendicular transition for a nematic phase at a wall

&
Pages 25-30 | Received 10 Jun 1991, Accepted 30 Jul 1991, Published online: 24 Sep 2006
 

Abstract

We use an Onsager-level density functional theory to investigate the behaviour of the nematic phase in contact with a solid wall. The nematic consists of hard rigid rods having perfect uniform alignment and uniform spatial density. In the absence of any particle-wall interactions besides excluded-volume forces, we predict a director orientation parallel to the wall. We show that this preference for parallel alignment is due to the entropy associated with the larger volume available to the particles in their parallel orientation. An adsorption energy favouring normal alignment gives rise to a transition from a high temperature parallel orientation to a low temperature normal orientation. We derive expressions for the temperature of this transition, relating it explicitly to the wall adsorption energy, particle axial ratio, and nematic density. Effects such as layering near the wall and imperfect nematic order are argued not to be necessary for the existence of this transition.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.