29
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Spin relaxation in cubic liquid crystals. The role of symmetry

Pages 625-639 | Received 27 Jan 1992, Accepted 15 Apr 1992, Published online: 24 Sep 2006
 

Abstract

Cubic liquid-crystalline phases are usually regarded as isotropic systems. This view is justified for physical properties that transform as second rank tensors. However, the time correlation functions describing spin relaxation in cubic phases include components that transform as fourth rank tensors, which distinguish between cubic and spherical symmetry. In this work we explore the consequences of this fact for spin relaxation behaviour in cubic phases using group theoretical methods. We identify the two irreducible crystal frame time correlation functions of a cubic phase, derive the orientation dependence of the laboratory frame time correlation functions for single crystal samples, and discuss the relation of the cubic (fourth rank) order parameter to the microstructure of the phase. Finally, as an illustration of the general results, we derive the time correlation functions for a specific model of a micellar cubic phase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.