49
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

NMR self-diffusion measurements in inverse micellar cubic phases

, , , &
Pages 893-903 | Received 03 Aug 1993, Accepted 29 Sep 1993, Published online: 24 Sep 2006
 

Abstract

We have measured self-diffusion coefficients of amphiphile and water molecules in novel inverse micellar lyotropic cubic phases using the pulsed field gradient NMR technique. We investigated two different ternary lyotropic systems: oleic acid/sodium oleate/water, and dioleoylglycerol/dioleoylphosphatidylcholine/water. Both of these systems have previously been shown by one of us to form a cubic phase of space group Fd3m, whose structure is a complex packing of two types of disconnected quasi-spherical inverse micelles embedded in a 3D hydrocarbon matrix. The amphiphile translational diffusion coefficients determined for the first time by 1H NMR in both systems are surprisingly large. Thus the self diffusion coefficients of amphiphiles may not provide a reliable way of distinguising inverse micellar from inverse bicontinuous phases. The water self-diffusion coefficient has been determined to have a value of 2·4 × 10−12 m2 s−1, a value which is more than two orders of magnitude lower than that typically observed for inverse bicontinuous cubic phases. This confirms unambiguously the inverse micellar topology of the Fd3m cubic phase, and indicates that the value of the water diffusion coefficient should permit inverse micellar and inverse bicontinuous structures to be reliably distinguished, even for systems where the structure has not been previously determined by diffraction.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.