20
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Magnetic-field induced biaxiality in nematic liquid crystals. Consequences for nuclear spin relaxation

Pages 759-773 | Received 11 Jan 1994, Accepted 02 Mar 1994, Published online: 24 Sep 2006
 

Abstract

When a uniaxial nematic liquid crystal is subjected to a magnetic field making a non-zero angle with the C axis, the uniaxial symmetry is broken. The principal effect is a field-induced biaxiality in the long-wavelength region of the director fluctuation spectrum. Whereas the induced biaxiality has little effect on the mean square director fluctuation amplitudes 〈n 2 x〉 and 〈n 2 y〉, which are dominated by short-wavelength modes, it can profoundly affect the nuclear spin relaxation behaviour, which is sensitive to long-wavelength modes. Motivated by the increasing number of nuclear spin relaxation studies of director fluctuations in thermotropic, amphiphilic, and polymeric nematic liquid crystals, we present here a theoretical analysis of the effects of field-induced biaxiality on nuclear spin relaxation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.