139
Views
83
CrossRef citations to date
0
Altmetric
Original Articles

On the structure and the chain conformation of side-chain liquid crystal polymers

, &
Pages 129-148 | Received 14 Sep 1993, Accepted 26 May 1994, Published online: 24 Sep 2006
 

Abstract

Backbone anisotropy and the structure of the mesophases of a series of side-chain liquid crystal polymers have been studied in the bulk by neutron scattering. The backbone conformation is obtained by small-angle neutron scattering on mixtures of hydrogenous polymers with deuteriated backbones. The components of the radius of gyration parallel, R and perpendicular, R ∥ to the magnetic field are determined as a function of temperature for both the nematic phase and the smectic phase. It is shown that the polymer backbone is deformed in both phases. When the polymer exhibits only a nematic phase, it adopts a prolate conformation, where the average backbone direction is more or less parallel to the aligned mesogenic groups. Upon transition from the smectic phase to a nematic phase, the backbone in the nematic phase assumes a slightly oblate shape. This tendency towards oblate shape is due to the smectic fluctuations which are always present in such nematic phases. The exentricity of the oblate backbone conformation in the smectic phase is always larger than in the nematic phase. This is attributed to a periodic distribution of the backbone between the mesophase layers. Then, the backbone anisotropy depends not only on the smectic structure (SA1, SAd), but also on the temperature dependence of the density of aligned mesogenic groups in the layers. On the other hand, it is shown that the isotopic mixtures are no longer ideal when polymers deuteriated in the mesogenic moieties are mixed with the corresponding hydrogenous polymers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.